

#### SIG45: DNV AND CFD

Manchester, November 12th 2012

Joaquim Pujol - ASM Fire and Explosions Group



### Outline

- Det Norske Veritas (DNV)
- DNV Maritime and Oil & Gas
- CFD and hydrodynamics at DNV
- CFD and Hydrodynamics challenges
- Response Surfaces: Fire & Explosion Risk Analyses
- Uncertainty Quantification
- Cross disciplinary learning





# Det Norske Veritas (DNV)

- DNV is an independent foundation with the purpose of safeguarding life, property, and the environment.
- DNV's core competence is to manage risks:
  - Identify, assess, and advise on how to manage risk.
  - Have an overview of the most critical risks and manage them professionally
- We have divided our activities into three operating companies DNV Maritime and Oil & Gas DNV KEMA Energy & Sustainability DNV Business Assurance

DNV has established approximately 300 offices in 100 countries, with more than 10,000 employees. Corporate Headquarters in Oslo, Norway







### DNV Maritime and Oil & Gas

- DNV Maritime and Oil & Gas provides classification, verification, risk management and technical advisory services to the global maritime and oil & gas industries
- CFD services is core competence in several sections
  - Safety Risk Management (Offshore)
    - E.g. Fire and Explosion modelling
  - Ship Hydrodynamics and Stability (Maritime)
  - Hydrodynamics & Moorings (Offshore)



VINNERBILDET: «Uvær på Frigg». Foto: Ingmar Bø



# CFD and Hydrodynamics at DNV

- SHE Risk Management
  - Fire CFD modelling
  - Explosion CFD modelling
  - Helideck analysis
  - Working environment
- Simulation of marine operations
- Wave and current loads on
  - Ships and offshore platforms
  - Mooring systems
  - Risers and umbilicals
  - Pipelines
  - Subsea structures

- Typical problem areas:
  - Fire and Explosion DAL loads
  - Offshore escape and evacuation (major event)
  - Weather protection requirements
  - Sloshing in tanks
  - Operational limits for Lifeboats
  - Hull design optimisation (fuel costs optimisation)
  - Hydrodynamic interactions
  - Wave slamming
  - Wave run-up
  - Wave-in-deck loads
  - Vortex induced oscillations



# CFD and Hydrodynamics challenges

- Fire and Explosion safety of novel offshore designs (safety risks)
- FLNG and Cryogenic safety risk
- Aging of offshore platforms
- Helideck safety
- Uncertainty quantification
- Extreme wave excitation of offshore structures
- Air gap / wave run-up for floating platforms
- 3D slamming and ventilated flows (free-fall lifeboats)
- Hydrodynamics for wave and tidal energy
- Simulation of marine operations
- Disturbed random wave kinematics
- Fuel optimisation of vessels



© Det Norske Veritas AS. All rights reserved.

#### Response Surfaces: Fire & Explosion Risk Analyses

- Approaches used at DNV
  - DNV's Fire & Explosion group (SHE Risk Management) uses Response Surfaces (or simplified models fitted to CFD) to calculate Fire&Explosion Dimensioning Accidental Loads (design input).
  - The simplified models allow for quick Montecarlo analyses (1E4, 1E5 simulations) to provide probabilistic explosion and fire design values.



#### Dispersion RS: Maximum Steady State Cloud Size





#### Explosion RS: Maximum Explosion Pressure Curve

Variation of Explosion Pressure with Filling Fraction



### Uncertainty Quantification.

- Uncertainty for Escape and Evacuation: Fire modelling
  - Escape routes impairment : CFD Fire modelling and Risk of impairment (risk picture).
- Uncertainty for Explosion loads:
  - Offshore Concept Selection (pre-FEED, FEED)
  - Uncertainty in the response surfaces (interval of confidence).
    - Note: Currently always assumed on the conservative side
- Uncertainty in wave statistics with high non-linear effects
  - Slamming, green water, sloshing induced impacts
- Free fall lifeboats motion patterns









SIG45: DNV AND CFD

...

# Cross disciplinary learning

- Uncertainty management is a challenge for many industrial sectors,
  - Aerospace
  - Automotive
  - Maritime
  - Offshore
  - Nuclear
- Can the different sectors learn from each other something?
  - J. Pujol, A Mayer "New Automatic Design Method for Automotive Plastic Parts using Optimisation Techniques with Reduced Models," Fisita 2004 World Automotive Congress, Barcelona
  - J. Pujol, C.Jones "Development of a Response Surface Approach for Probabilistic Explosion Modelling for Large FPSOs and FLNG", 69<sup>th</sup> FABIG Technical Meeting, March 2012





# Safeguarding life, property and the environment



