

Reduced Order Models for Transonic Potential Flows

ERCOFTAC Spring Festival 2024

Marco Antonio Zuñiga Perez

CIMNE - UPC

Kratos MultiPhysics Group: Riccardo Rossi, Ruben Zorrilla, Carlos Roig, Raúl Bravo, Sebastián Ares de Parga, Nicolás Sibuet

16/05/2024

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

1. Kratos MultiPhysics Group

- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Kratos MultiPhysics Group

KRATOS Multiphysics ("Kratos") is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance.[1][2]

Kratos is written in C++, and counts with an extensive Python interface.

Kratos is free under BSD-4 license and can be used even in commercial softwares as it is. Many of its main applications are also free and BSD-4 licensed but each derived application can have its own proprietary license.

Kratos MultiPhysics Group

Main Features

Kratos is multiplatform and available for Windows, Linux (several distros) and macOS. OpenMP and MPI parallel and scalable up to thousands of cores.

Provides a core which defines the common framework and several application which work like plug-ins that can be extended in diverse fields. Kratos github site

◯

16/05/2024 ⁵

1. Kratos MultiPhysics Group

2. Motivation

- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Motivation

- 1. Commercial aircrafts normally fly in the transonic regime.
- 2. There is a need for high-fidelity models, but the computational cost is unfeasible for realistic problems.
- 3. The full potential equation is the lowest fidelity layer that can capture transonic behavior and can be used in preliminary design and optimization problems.

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Transonic Full Potential Equation

16/05/2024 ⁹

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Proper Orthogonal Decomposition

11

Proper Orthogonal Decomposition

Take the SVD of $S = U\Sigma V^{T} \approx U_{k}\Sigma_{k}V_{k}^{T}$

16/05/2024

Proper Orthogonal Decomposition

Given $A \in \mathbb{R}^{n \times n}$, $n > m$ The asymptotic complexity of computing its SVD is[8]:

16/05/2024

13

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Projection Methods - ROM

15

Projection Methods - ROM

16

Projection Methods - HROM

The goal is to find a **subset of elements and their corresponding weights** by solving an optimization problem[9].

$$
(E, W) = \arg\min ||\zeta||_0
$$

s.t.
$$
\|G\mathbf{1} - G\zeta\|_2^2 \le \epsilon \|G\mathbf{1}\|_2^2
$$

$$
\zeta_i \ge 0
$$

 \bigcirc

Where $G = G(\Phi, R)$

NP-HARD. Solving via greedy procedure

$$
(\mathbf{E}, \mathbf{W}) = \arg\min \left\| \sum_{i=1}^{n} \mathbf{g}_i - \sum_{i \in \mathbf{E}} \mathbf{g}_i \boldsymbol{\omega}_i \right\|_2^2
$$

s.t. $\omega_i > 0$

16/05/2024

Projection Methods - HROM

Assembly comparison FOM vs HROM:

 \circ

 \bigcap

$$
\left(\prod_{e=1}^{n \text{ elem}} A_e\right) u = \prod_{e=1}^{n \text{ elem}} b_e \qquad \qquad \sum_{e \in E} \Phi_e^T A_e \Phi_e \omega_e \right) q = \sum_{e \in E} \Phi_e^T b_e \omega_e
$$

FORM Simulation
HROM Simulation

16/05/2024

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

2D Application case - Naca 0012

Parameters range:

Train set 150 - Test set 300

2D Application case - Naca 0012

16/05/2024

 \bigcirc

 \bigcap

21

2D Application case - Naca 0012

16/05/2024

 \bigcap

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

3D Application case - Onera M6 Wing

3D Application case - Onera M6 Wing

 \bigcirc

 \bigcap

3D Application case - Onera M6 Wing

Case C Approximation Test:

 α = 3.064 $M = 0.809$

FOM: **+7 min** ROM: **59 sec**

Approx error: fom - rom: **1.78%** 15 training cases

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing

8. Conclusions

- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Conclusions

- Reduced order models POD based have been trained for both two-dimensional and three-dimensional cases.
- Both cases have been used to obtain solutions for new parameters.
- It has been observed that the solving time is reduced, especially with the use of HROM, while maintaining accuracy.
- Some problems may arise when the method of solving the potential problem is slightly modified, for example, with viscosity corrections.
- The validity range of the Full Potential Equation is very small, although it is sufficient for exploring the application of the method and obtaining preliminary results.

- 1. Kratos MultiPhysics Group
- 2. Motivation
- 3. Transonic Full Potential Equation
- 4. Proper Orthogonal Decomposition
- 5. Projection methods ROM HROM
- 6. 2D Application Case Naca 0012
- 7. 3D Application Case Onera M6 Wing
- 8. Conclusions
- 9. Ongoing future work
- 10. Acknowledgements
- 11. References

Ongoing - Future work

- 1. Finish implementation HROM Transonic Full Potential.(*)
- 2. Testing 3D plane models.
- 3. Testing Transonic Aerodynamic Shape Optimization.
- 4. Testing Multi-fidelity and ANN methods.

Acknowledgements

This work is funded by

 \bigcirc

Ajuts Joan Oró per a la contractació de personal investigador predoctoral en formació (FI)

Agència de Gestió d'Ajuts **Universitaris** i de Recerca

Generalitat de Catalunya

References

- 1. P. Dadvand, R. Rossi, and E. Oñate. "An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications." In: Archives of Computational Methods in Engineering 17.3 (July 2010), pp. 253–297. doi: 10.1007/s11831-010-9045-2.
- 2. KRATOS Multi-Physics.<https://github.com/KratosMultiphysics>.
- 3. I. López, E. Jones, M. Nuñez, R. Zorrilla, R. Rossi, K. Bletzinger, and R. Wüchner. "A transonic potential solver with an embedded wake approach using multivalued finite elements." doi: 10.23967/coupled.2021.007.
- 4. C. Rumsey. 3D ONERA M6 Wing Validation Case. https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html.
- 5. A. Crovato et al. "Effect of Levels of Fidelity on Steady Aerodynamic and Static Aeroelastic Computations." In: Aerospace 7.4 (2020). doi:10.3390/aerospace7040042.
- 6. W.H. Mason. Lecture notes in Configuration Aerodynamics. http://www.dept.aoe.vt.edu/~mason/Mason_f/ConfigAeroTransonics.pdf. Virginia Polytechnic Institute and State University. 2006.
- 7. M. Rivers. NASA Common Research Model. [https://commonresearchmodel.larc.nasa.gov/.](https://commonresearchmodel.larc.nasa.gov/) Sponsored by NASA. 2012
- 8. Halko, 2011. doi.org/10.1137/090771806

 \bigcirc

9. Hernández, 2020. doi.org/10.1016/j.cma.2020.113192

Thank you! Questions?

marco.antonio.zuniga@upc.edu

mzuniga@cimne.upc.edu

