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Synthesis (Reconstruction)

Credit: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (Brunton & Kutz)

V = Φ Dα Mμ

Dynamic Mode Decomposition
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• as a data-driven modal decomposition technique, and 

• as matrix factorization technique

B. Begiashvili et al., Data-driven modal decomposition methods as feature detection techniques for flow problems: 
a critical assessment, Phys. Fluids 35, 041301 (2023).

This leads to connections with other decomposition techniques: 

FFT, Spectral POD, multi-scale POD, multi-resolution DMD ...
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SVD/DMD are both matrix factorization techniques

Matrix L0: Left Singular Vectors (space, real), L0
H L0 = Im

Matrix S0: Singular Values (energy, real)
Matrix R0: Right Singular Vectors (time, real, mixes frequencies),  R0

H R0 = In



SVD/DMD are both matrix factorization techniques

Matrix Φ: Dynamic Modes (space, complex)
Matrix Dα: Amplitudes (complex unless careful, meaning? importance?)
Matrix Mμ: Vandermonde matrix (time, complex, distinct frequencies)



SVD/DMD are both matrix factorization techniques

Scaled Chronos Matrix
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There are (np)  many spatial points in the system;

most of them will have coherent temporal variations.

Can few data points be representative of
the whole database temporal behaviour?

Yes! 

Those representative data points can be identified using 
clustering algorithms (Unsupervised Machine Learning).

Guéniat, Mathelin & Pastur,  Phys. Fluids, vol. 27 (2), 2015.
Li, Garicano-Mena, Zheng & Valero, Energies, vol. 13 (9), 2020.
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Guéniat, Mathelin & Pastur,  Phys. Fluids, vol. 27 (2), 2015.

How can one identify those modes that have a most representative temporal variation?

Group those points that have comparable pdf's.

It is not easy to identify a pdf from discrete data, though.

Take Nm statistical moments as representative of the pdf.



Spatially Agglomerated DMD analysis

1. Compute the first        (estimated) statistical moments, with 

2. Arrange those moments into matrix

3. Spatial Agglomeration 
feed         to clustering algorithm
retrieve reduced database

4. Perform DMD analysis on spatially reduced database
retrieve Ritz values & DMD modes

5. Reconstruct original DMD modes

Guéniat, Mathelin & Pastur,  Phys. Fluids, vol. 27 (2), 2015.

nt



Li, Garicano-Mena, Zheng & Valero, Dynamic Mode Decomposition Analysis of Spatially Agglomerated Flow 
Databases, Energies, vol. 13 (9), 2020.
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Choose those modes that have largest αi 

and use r1

V = Φ Dα Mμ
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Composite DMD

Analysis on composed Cf(tk)& u'v'(r, tk) fields 

Garicano-Mena, Li, Ferrer & Valero, A composite dynamic mode decomposition analysis of turbulent channel 
flows, Phys. Fluids, vol. 31, 2019.
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allows  effective reduction of computational costs

while retaining accurate results.



Spatial Agglomeration & DMD

DMD analysis applied on Spatially Agglomerated Databases

allows  effective reduction of computational costs

while retaining accurate results.

Succesful example of combination of 
(Unsupervised) Machine  Learning Algorithms
&
data-driven modal decomposition techniques.

Li, Garicano-Mena, Zheng & Valero, Dynamic Mode Decomposition Analysis of Spatially Agglomerated Flow 
Databases, Energies, vol. 13 (9), 2020.



Conclusions



DIAPOSITIVA 100

MethodologyConclusions

Data-driven modal decomposition techniques ⇌ matrix factorization:

SVD is univoquely defined, 
but mixes frequencies.

DMD identifies distinct frequencies, 
but needs solving an optimization problem.



DIAPOSITIVA 101

MethodologyConclusions

Data-driven modal decomposition techniques ⇌ matrix factorization:

SVD (POD) is univoquely defined, 
but mixes frequencies.

DMD identifies distinct frequencies, 
but needs solving an optimization problem.
Fortunately, a closed  solution is available.
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MethodologyConclusions
Computational cost of Data-driven modal decomposition analysis:

Potentially expensive & large memory footprint.

Strategies to alleviate the computational cost available:
- Spatial Agglomeration,
- Memory-distributed parallelism (not discussed today).
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MethodologyConclusions
More sophisticated variants available:

Higher-Order SVD (tensor formulation):
very robust against noise. 

Higher-Order DMD:
uses a generalized, d-lagged Koopman assumption
capable of unravel very complex dynamics

Applications also beyond fluid dynamics, 
e.g. Medical Imaging  (echocardiography videos, MRI data)

Groun, Le Clainche et al., Higher order dynamic mode decomposition: From fluid dynamics to heart disease 
analysis, Computers in Biology and Medicine, Vol 144, 2022.
Groun, Le Clainche et al., A novel data-driven method for the analysis and reconstruction of cardiac cine MRI, 
Computers in Biology and Medicine, Vol. 151, 2022.
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MethodologyConclusions
More sophisticated variants available:

Higher-Order SVD (tensor formulation):
very robust against noise. 

Higher-Order DMD:
uses a generalized, d-lagged Koopman assumption
capable of unravel very complex dynamics.

Combination with Neural Network technology.

No restriction on data origin.
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Thank you for your attention

Questions?


