On the role of blowing configuration for efficient drag reduction of a 3D blunt body

J.M. Camacho-Sánchez^{1, 2}, M. Lorite-Díez^{2, 3}, J.I. Jiménez-González^{1, 2} and C. Martínez-Bazán^{2, 3}

Grupo de Mecánica de Fluidos e Interacción Fluido-Estructura www.mefluife-ujagr.es

¹ Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, SPAIN
² Instituto de Investigación del Sistema Tierra en Andalucía (IISTA), SPAIN
³ Departamento de Mecánica de Estrucutras e Ingeniería Hidráulica, Universidad de Granada, SPAIN

José Manuel Camacho Sánchez

General features of heavy vehicles: Wake, drag and energy consumption

- Geometrical limitations : maximize loading capacity and simplify docking
- Wake behind heavy vehicles \rightarrow fully turbulent and three-dimensional
- Low base pressure and strong recirculating zone because of a massive flow separation
- Wake contribution to drag (= fuel consumption and greenhouse gases emissions)
- Use of simplified 3D models (retains features: shedding, massive separation \rightarrow high drag)

30% Aurell & Wadman. 2007

Square-back Ahmed body (GM model) Han et al. SAE 1996

Universidad de Jaén

Blowing as a wake control technique

- Blowing is the process of injecting air
- In the present work we focus on base blowing: possibility to use exhaust gases from the engine or other sources.

José Manuel Camacho Sánchez

Lorite-Díez et al. JFM 2020

José Manuel Camacho Sánchez

> Perimetric base blowing in a 3D-Body

José Manuel Camacho Sánchez

José Manuel Camacho Sánchez

José Manuel Camacho Sánchez

LR

• <u>Orientation</u>: Perimetric horizontal vs Perimetric vertical (Lorite-Díez et al. 2020)

• Location: Perimetric vs centered (Veerasamy et al. 2021)

R

• <u>Area</u> (Khan et al. 2022)

2. Experimental set-up

José Manuel Camacho Sánchez

> Wake visualizations

José Manuel Camacho Sánchez

> Forces, pressure and recirculation bubble length

Forces, pressure and recirculation bubble length

Two regimes are identified in all slot configurations:

Mass regime: As C_q rises, the blowing jet fills recirculation bubble enhancing its length $(L_r^*\uparrow)$ \rightarrow Increasing base pressure $(C_B\downarrow) \rightarrow$ Reducing drag $(C_x\downarrow)$

Forces, pressure and recirculation bubble length

Two regimes are identified in all slot configurations :

- Mass regime: As C_q rises, the blowing jet fills recirculation bubble enhancing its length $(L_r^*\uparrow)$ \rightarrow Increasing base pressure $(C_B\downarrow) \rightarrow$ Reducing drag $(C_x\downarrow)$
- Momentum regime: The jet starts to disturb the shear layers \rightarrow The recirculation bubble shrinks $(L_r^* \downarrow) \rightarrow$ Reducing base pressure $(C_B \uparrow) \rightarrow$ Increasing drag $(C_x \uparrow)$

➢ Forces, pressure and recirculation bubble length

Two regimes are identified in all slot configurations :

- Mass regime: Curves tend to overlap
- Momentum regime: Once the optimum value has been exceeded, the slots show clear differences.

Forces, pressure and recirculation bubble length

• Differences between the slots:

- The **S** slot is the most efficient.
- The vertical slots distribution (**V** and **C**) reduces drag very slightly.
- **H** is an intermediate case between the above.

- **RSB** modes:
 - The vertical slots (V and C) asymmetrize the wake in the momentum regime.
 - The S-slot completely mitagate bi-stability and the H-slot tends to it.

4. Discussion

Slot	Geometry	S _s /hw	$C_{q,opt}$	$C_{q,opt}\sqrt{S_s/hw}$	$\Delta C_{B,max}$	Slope
S =		0.1	0.0244	0.0772	-0.0238	-0.329
VI		0.1	0.0157	0.0496	-0.0139	-0.317
н—		0.1	0.0244	0.0772	-0.0194	-0.292
C+	Æ	0.1	0.0244	0.0772	-0.0206	-0.293
Khan et. al $x1.0$		0.0057	0.0053	0.0708	-0.0170	-0.312
Khan et. al $x0.5$	•	0.001425	0.0027	0.0711	-0.0165	-0.315
Khan et. al $x0.35$	·	0.000698	0.0018	0.0672	-0.0166	-0.306
Lorite-Diez et al. LR ${\mathbb I}$		0.0354	0.0055	0.0291	-0.0036	-0.152
Lorite-Diez et al. TB		0.0498	0.0078	0.0347	-0.0093	-0.311

5. Conclusions

Two regimes (mass and momentum) have been identified in all configurations. $C_q = 0$ Mass regimen

- The blowing jet fills recirculation bubble enhancing its length $(L_r^* \uparrow) \rightarrow$ base pressure recovery $(C_B \downarrow) \rightarrow$ drag reduction $(C_x \downarrow)$.
- Here, $\Delta C_B = f(C_q \sqrt{S/S_s}) \approx -0.3 C_q \sqrt{S/S_s}$ for all slot configurations, orientations or positions $\rightarrow \Delta C_B$ and ΔC_x curves overlap.
- No major changes in RSB modes.

- The high-momentum jet starts to disturb the near wake topology and to produce an unstable jet \rightarrow Drag reduction stops
- $\circ \quad \Delta C^{S}_{x,max} > \Delta C^{H}_{x,max} > \Delta C^{C}_{x,max} > \Delta C^{V}_{x,max}$
- **S** symmetries the wake (total suppression of bi-stability).
- **H** slightly symmetries the wake: partial suppression of bi-stability.
- The vertical slots (V and C) increase the horizontal wake asymmetry: less ΔC_B and $\Delta C_{x.}$

Thank you for your attention **Questions?**

The authors gratefully **acknowledge** the funding provided by the projects TED2021-131805B-C21 and TED2021-131805B-C22, financed by the Spanish MCIN/ AEI/10.13039/501100011033/ and the European Union NextGenerationEU/PRTR.

Contact: jmcamach@ujaen.es

José Manuel Camacho Sánchez