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Data-driven modelling

• How to identify flow models from data?

• Flow behavior is typically complex, 
data are hard to interpret directly.

• Divide and conquer strategy:
• model the flow as a superposition of simpler modes;

• understand the interaction between modes.
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𝒂 𝒙, 𝑡 =෍
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𝜓 𝑖 𝑡 𝜎 𝑖 𝝓 𝑖 𝒙

Proper Orthogonal Decomposition

• In its most common implementation, POD separate variables in a vector field:

• 𝝓 𝑖 𝒙 are the spatial basis functions 

• 𝜓 𝑖 𝑡 are the temporal basis function

• 𝜎(𝑖)
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are representative of an “energy” 
(kinetic energy for a velocity field)
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POD in discrete space

• Time correlation matrix:

• Spatial correlation matrix:

• Singular Value Decomposition (SVD):

𝐴 =

𝑎 𝒙, 𝑡 1

𝑎 𝒙, 𝑡(2)

⋮
𝑎 𝒙, 𝑡(𝑛)

= 𝑎 𝒙, 𝑡 1

= 𝑎 𝒙, 𝑡(2)

= 𝑎 𝒙, 𝑡(𝑛)

⋮

𝑡(1)

𝑡(2)

𝑡(𝑛)

Rt = AAT = ΨΣΣ𝑇ΨT

Ψ =
𝜓 1 𝑡(1) ⋯ 𝜓 𝑟 𝑡(1)

⋮ ⋱ ⋮
𝜓 1 𝑡(𝑛𝑡) ⋯ 𝜓 𝑟 𝑡(𝑛𝑡)

Rs = ATA = ΦΣTΣΦT

Φ =
𝜙 1 𝑥(1) ⋯ 𝜙 𝑟 𝑥(1)

⋮ ⋱ ⋮
𝜙 1 𝑥(𝑛𝑝) ⋯ 𝜙 𝑟 𝑥(𝑛𝑝)

A = ΨΣΦT

• Snapshot method (Sirovich, 1987):
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Unsteady forces on flapping wings

Rival et al. (2009), Exp Fluids

Mitchel et al. (2015) APS Gallery of Fluid Motion

• Flapping wings are characterized by vortices 
over the wing due to flow separation.

• These vortices produces low pressures, resulting 
in high lift and propulsive forces.

• Existing data-driven force models cannot be 
easily interpreted.

• Is it possible to identify an interpretable data-
driven model for the forces?

• Using a flow-based decomposition to identify 
the relation between vortices and forces on the 
wing.
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Experimental setup

• Flapping kinematics:

ℎ 𝑡 = 𝑐 sin(2𝜋𝑓𝑡)

𝜃 𝑡 = 𝜃0sin 2𝜋𝑓𝑡 +
𝜋

2

• Measurements:

• 80 phase-averaged 2D-PIV velocity fields in 
the midspan section;

• Time-resolved aerodynamic loads from the
load-cell.

6-axis load cell

Flapping

mechanism

PIV Field of View

𝑆𝑡 =
2𝑐f

V∞
= 0.2

𝑅𝑒 =
𝜌𝑉∞𝑐

𝜇
= 3600

𝑘 =
𝜋𝑓𝑐

𝑉∞
= 0.63

𝜃0 = 10∘
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Changing the reference frame

• The fluid domain changes with time.

• POD does not directly account for time-varying domain.

• The reference frame has been re-centered on the wing to avoid changes in the domain 
boundaries.
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Velocity Decomposition: results

• Mode 0 is the time average.

• It represent a flow parallel to the chord.

• Modes 1+2 are “sinusoidal” contributions in phase
quadrature.

• They represent the circulation over the airfoil.

32.3% KE𝝓 0 (𝒙) 48.1% KE𝝓 1 (𝒙) 6.7% KE𝝓 2 (𝒙)
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Low-order model

Phase-averaged field

Modes 1+2

Modes 3+4+5+6
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Low-order model

Phase-averaged field

Modes 1+2

Modes 3+4+5+6
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POD and Stochastic Estimation

• Linear Stochastic Estimation (LSE)
given the multipoint signals a(x,t) and b(x,t), their linear relation X is
given (stochastically) by

𝐴𝑇𝐴 X = 𝐵𝑇𝐴 ⇒ X = 𝐴𝑇𝐴 −1𝐵𝑇𝐴

• POD
𝐴 = Ψ𝐴Σ𝐴Φ𝐴

𝑇 ⇒ Ψ𝐴 = 𝐴Φ𝐴Σ𝐴
−1

• POD-LSE (or Extented POD, Borée, 2003)
the LSE of the temporal POD modes provides the stochastic linear 
relation

Ψ𝐴
𝑇Ψ𝐴 Σ𝐵Φ𝐵

𝑇 = 𝐵𝑇Ψ𝐴 ⇒ Σ𝐵Φ𝐵
𝑇 = 𝐵𝑇Ψ𝐴

Ψ: temporal basis

Φ: spatial basis

𝐴 =
𝑎 𝒙𝑎, 𝑡

1

⋮
𝑎 𝒙𝑎, 𝑡

𝑛𝑡

𝐵 =
𝑏 𝒙𝑏, 𝑡

1

⋮
𝑏 𝒙𝑏 , 𝑡

𝑛𝑡
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Flow Field / Force Model: results
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𝑄 𝑡 = 𝛼𝑒𝑓𝑓 𝑡 − 𝜃𝑚 +
𝑐

2𝑉∞
ሶ𝜃 𝑡 1.5 − 2𝜉𝑝

* Theodorsen, T. (1935) NACA report 496 

𝐶𝐿,𝑐 𝑡 = 2𝜋𝐶 𝑘 𝑄 𝑡*

𝐶𝐷,𝑛𝑐 =
𝜋𝑐

2𝑉∞
ሶ𝛼 𝑡*

† Garrick, I.E. (1937) NACA report 567 

෍

𝑖=1

2

𝜓 𝑖 𝜎𝐹
𝑖

𝐶𝐿,𝑐

𝐶
𝑦

𝑡/𝜏

𝐶𝐷,𝑠 = −2𝜋 2𝐶 𝑘 𝑄 𝑡 −
𝑐

2𝑉∞
ሶ𝛼

2
†

෍

𝑖=1

2

𝜓 𝑖 𝜎𝐹
𝑖

𝐶𝐷,𝑛𝑐

𝐶
𝑥

𝑡/𝜏

෍

𝑖=3

6

𝜓 𝑖 𝜎𝐹
𝑖

0.5 𝐶𝐷,𝑠 − 𝐶𝐷,𝑠

𝐶
𝑥

𝑡/𝜏

circulatory y-force: 

non-circulatory x-force: 

suction x-force: 

Modes 1,2: 
circulation on the wing and 
the rotational acceleration of 
the frame

Modes 3,4,5,6: 
wake shedding

൝

ሼ



Flow Field / Force Model: summary

• Using POD and LSE a model linking flow 
fields and forces is extracted from data*.

• The model is physically sound:
• Modes 1 and 2 model wing circulation and 

reference frame rotation and provide 
circulatory force on y and added-mass force 
on x. 

• Higher order modes model wake shedding 
and provide suction force on x.

• The link is purely stochastic!

• Can we use a more deterministic 
approach?
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෍

𝑖=1

2

𝜓 𝑖 𝜎𝐹
𝑖

𝐶𝑙,𝑐

෍

𝑖=1

6

𝜓 𝑖 𝜎𝐹
𝑖

𝐶𝐷,𝑛𝑐 + 0.5 𝐶𝐷,𝑠 − 𝐶𝐷,𝑠

𝑡/𝜏

𝐶
𝑦

𝐶
𝑥

*Raiola et al, ETFS, 2021



Pressure computation

• Pressure and velocity are linked through the
Poisson equation:

o Finite differences solver;

o Neumann boundary condition on the 
airfoil

o Neumann and Dirichlet conditions on the 
external boundaries;

o velocity fields are interpolated on a finer
mesh
317 × 244 vect. → 634 × 479 vect.

Dirichlet: 𝑝 = 0

Dirichlet: 𝑝 = 0

D
ir
ic

h
le

t:
 𝑝
=
0

N
e

u
m

a
n

n
: 
𝛻
𝑝
=
𝑓
(𝑢
)

2.6c 7.0c

3
.5

c
3
.5

c

Neumann: 

𝛻𝑝 = 𝑓(𝑢)

𝛻2𝑝 = −𝜌∇ ⋅ 𝒖 ⋅ ∇ 𝒖

𝛻𝑝 = −𝜌
𝐷𝒖

𝐷𝑡
− 𝜇𝛻𝟐𝒖
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Loads computation

• Loads are computed from the pressure over 
the airfoil surface:

𝑭 = ර𝑝 𝒏 𝑑𝑠

𝐿

𝐷

𝐹𝑦

𝐹𝑥
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Velocity/Pressure Decomposition

• Performing a Galerkin projection of the Poisson equation:

• The quadratic relation between velocity modes and pressure can be retrieved using the
Quadratic Stochastic Estimation (QSE):

𝜓 𝑖 : Time Mode i

𝜎 𝑖 : Singular Value i

𝝓 𝑖 : Space Mode i

𝑃 𝑖,𝑗 : Pressure 
contribution 
of modes i and j

Υ =
𝜓 0 (𝑡1)𝜓

0 (𝑡1)
⋮

𝜓 0 (𝑡𝑛)𝜓
0 (𝑡𝑛)

⋯
⋱
⋯

𝜓 0 (𝑡1)𝜓
𝑛 (𝑡1)

⋮
𝜓 0 (𝑡𝑛)𝜓

𝑛 (𝑡𝑛)

⋯
⋱
⋯

𝜓 𝑛 (𝑡1)𝜓
𝑛 (𝑡1)

⋮
𝜓 𝑛 (𝑡𝑛)𝜓

𝑛 (𝑡𝑛)
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ൢ

𝛻2𝑝 = − 𝜌∇ ⋅ 𝒖 ⋅ ∇ 𝒖

𝒖 =෍

𝑖=0

𝑛

𝜓 𝑖 𝜎 𝑖 𝝓 𝑖 ⇒ 𝛻2𝑝 𝒙, 𝑡 =෍

𝑖=0

𝑛

෍

𝑗=0

𝑛

𝜓 𝑖 𝜓 𝑗 𝜎𝑃
𝑖,𝑗
𝛻2𝑃 𝑖,𝑗

𝛻2𝑃 𝑖,𝑗 (𝒙) = −
𝜎 𝑖 𝜎 𝑗

𝜎𝑃
𝑖,𝑗

𝜌∇ ⋅ 𝝓 𝑖 (𝒙) ⋅ ∇ 𝝓 𝑗 (𝒙)

Υ𝑇Υ P = 𝑝𝑇Υ ⇒ P = Υ𝑇Υ −1𝑝𝑇Υ

Quadratic
relation!



Velocity/Pressure Decomposition: results

• The QSE is performed on the first 3 POD 
modes:

• Most of the terms are relevant for the 
pressure field (𝜎𝑃).

• The normal force is mainly dominated by linear 

contributions 𝑃 0,0 , 𝑃 0,1 , 𝑃 0,2 .

• The chordwise force is mainly dominated by 

𝑃 0,0 and 𝑃 1,2 .

𝑝 𝒙, 𝑡 ≈෍

𝑖=0

3

෍

𝑗=0

3

𝜓 𝑖 𝑡 𝜓 𝑗 𝑡 𝜎𝑃
𝑖,𝑗
𝑃 𝑖,𝑗 (𝒙)

𝐹𝑥 𝑡 ≈෍

𝑖=0

3

෍

𝑗=0

3

𝜓 𝑖 𝑡 𝜓 𝑗 𝑡 𝜎𝐹𝑥
𝑖,𝑗

𝐹𝑦 𝑡 ≈෍

𝑖=0

3

෍

𝑗=0

3

𝜓 𝑖 𝑡 𝜓 𝑗 𝑡 𝜎𝐹𝑦
𝑖,𝑗
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Velocity/Pressure Decomposition

• The contribution 𝑃 0,0 is constant in time:

𝜎𝑃
0,0

𝑃 0,0

• Contribution of the chord-wise flow.

• Pressure acts mainly in the chord-wise direction.
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Velocity/Pressure Decomposition

• The contributions 𝑃 0,1 and 𝑃 0,2 are linear:

𝜓 𝑖 𝑡 𝜎𝑃
0,𝑖

𝑃 0,𝑖

• Interaction between the circulation (modes 1+2) 
and the chordwise flow in mode 0.

• This pressure is antisymmetric wrt the chord.

• It is associated mainly with chord-normal forces.
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Velocity/Pressure Decomposition

• The contributions 𝑃 1,1 , 𝑃 1,2 and 𝑃 2,2 are 
quadratic:

𝜓 𝑖 𝑡 𝜓 𝑗 𝑡 𝜎𝑃
𝑖,𝑗
𝑃 𝑖,𝑗

• Mutual interaction between the circulation 
(modes 1+2).

• It mainly contribute to chordwise force.
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Reduced model: velocity and pressure fields

Full

Linear

Constant

Quadratic
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Velocity/pressure decomposition: summary

• POD and QSE can provide a combined velocity/pressure decomposition of 
the flow features on the wing*. 

• The main flow features are: 

• chord-wise mean flow;

• time-evolving vortex over the wing.

• A more deterministic force/flow field model is obtained:

• a constant chord-wise force contribution from the chord-wise mean;

• a linear chord-normal force contribution arising from the interaction between the 
chordwise flow and the wing vortex

• a quadratic chord-wise force contribution from the vortex.

23
*Raiola, LXLASER2022, 2022



Advecting wavepackets in subsonic jet noise

• Subsonic jet noise is dominated by sound emission 
from convective flow structures in the jet.

• These structures are referred to as wavepackets.

• These structures are: 

- coherent in the azimutal direction; 

- modulated in the axial direction; 

- temporally intermittent;

- not highly energetic.

Suzuki & Colonius, JFM, 2006

Crow & Champagne, JFM, 1971

Freund, JFM, 2001
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Identification of wavepackets

• A large body of work is dedicated
to educe wavepackets from jet 
flows.

• Wavepackets should be coherent
in the spatio-temporal sense:

𝐴 𝑥, 𝑡 𝑒𝑗(𝑘𝑥−𝜔𝑡)

• SPOD (Towne et al., 2017) is
generally used to detect and 
study wave-packets.

• The main drawback of SPOD is 
the need for time resolution.

• The successful application of this 
technique is mostly limited to LES 
data, limiting the number of 
studies in this subject.

Cavalieri et al., AMR, 2019
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Hilbert Transform

• A travelling wave in the complex domain is given by:

𝑎 + 𝑗𝑏 𝑒−𝑗𝜔𝑡 = 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡
𝑓 𝑡

+ 𝑗(𝑏 cos 𝜔𝑡 − 𝑎 sin 𝜔𝑡 )

H 𝑓 𝑡 𝑡

• The Hilbert Transform H produce a 𝜋/2 shift of the signal:

H 𝑓 𝑡 𝑡 =
1

𝜋
𝑝. 𝑣.න

−∞

+∞ 𝑓 𝜏

𝑡 − 𝜏
𝑑𝜏

𝑓 𝑡

𝐻 𝑓 𝑡 𝑡

𝑓𝐴(𝑡)

- 𝑓𝐴(𝑡)

26

• The complex-valued extension of 𝑓 𝑡
is the Analytic Signal  መ𝑓(𝑡)

መ𝑓 𝑡 = 𝑓 𝑡 + 𝑗 𝐻 𝑓 𝑡 𝑡 = 𝑓𝐴(𝑡) 𝑒𝑗𝜃(𝑡)



Hilbert POD

• Using the Analytic Signal (in time) and standard SVD, a complex extension of the POD* can be 
obtained:

ෝ𝒖 𝒙, 𝑡 = 𝒖 𝒙, 𝑡 + 𝑗𝐻 𝒖 𝒙, 𝑡 𝑡 =෍

𝑖

෠𝜓𝑖 𝑡 𝜎𝑖 ෡𝝓𝑖(𝒙)

• Time resolution is required!

• Is it possible to trade space resolution for time resolution?

• For travelling modes:

෍

𝑖

| ෠𝜓𝑖 𝑡 | 𝜎𝑖 |෡𝝓𝑖(𝒙) | 𝑒
𝑗 kx−𝜔𝑡 = 𝒖 𝒙, 𝑡 + 𝑗𝐻 𝒖 𝒙, 𝑡 𝑥 = ෝ𝒖 𝒙, 𝑡

H 𝑢 𝑥, 𝑡 𝑥 =
1

𝜋
𝑝. 𝑣.න

−∞

+∞ 𝑢 𝜆, 𝑡

𝑥 − 𝜆
𝑑𝜆

• The Hilbert transform can be performed also in space *!

Complex

Time 

Mode

Complex

Space

Mode

Real 

Singular

Value

*Barnett, MWR, 1982; Kriegseis et al., ISPIV 2021
27

*Raiola, SFMC, 2022



Turbulent Jet Dataset

28

• High Fidelity LES dataset
(Towne et al, AIAA, 2023):
• 𝑀𝑗𝑒𝑡 = 0.9

• 𝑅𝑒𝑗𝑒𝑡 =
𝑈𝑗𝑒𝑡 𝑑

𝜈
≈ 10^6

• Δ𝑡 = 0.2
𝑑

𝑐0

• 10000 snapshots

• 30𝑑 × 6𝑑 in x-r plane

• 656 × 138 × 128 gridpoints

• Only the axisymmetric part is used,
i.e. azimuthal wavenumber 0.

• Streamwise and radial velocity fields in 
a x-r plane.



HPOD results
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Oscillator model

• The wavepacket
behavior is better
highlighted
through an
oscillator model:

𝚽 𝒙 𝑒−𝑖𝜔𝑡

• The real temporal 
behavior is more 
complicated…
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HPOD results

31

𝑡𝑐

𝑑



The real temporal behavior

32



Wavepackets in jet flows: summary

• The Hilbert POD provides a complex-value extension of classic POD.

• A space-only implementation is obtained by switching from time to convective direction 
to provide the phase information of the wave.

• The space-only HPOD can extract wavepackets from turbulent jet flow fields without 
need of temporally resolved data.

• These wavepackets are not spectrally pure but live in a time-frequency domain.

• These velocity wavepackets can be used to decompose the Lighthill’s analogy source 
term using a Galerkin projection…

… but this another story (for the AIAA/CEAS Aeroacoustics 2024 in Rome).
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