



## Numerical research on conjugate heat transfer for batteries at CMT

ERCOFTAC Spring Festival 16<sup>th</sup> May 2024

Xandra Margot<sup>1</sup>, Kundan Kumar, Cem Karaca<sup>2</sup>

#### <sup>1</sup>CMT-Clean Mobility & Thermofluids

Universitat Politècnica de València. Spain

#### <sup>2</sup>Departamento de Ingeniería

Università degli Studi di Perugia. Italy







### Contents

- Introduction: objective and methodology
- Module definition
- Cell characterization
- Set-up of CFD-CHT model for one cell with cooling
- Cooling plate flow analysis
- Study for small module
- On-going and future work





### > Objective

Study of a battery pack side cooling system for an e-bus.

### Methodology

- Calculation of heat generated by a battery cell / module:
  - Calculate parameters for cell model (equivalent conductivities)
  - Apply model to calculate heat generation for different charge/discharge rates (C-rates) of the module

### Set-up of CFD-CHT model for one cell with side cooling

### • Flow characterization of side cooling plate:

- CFD to determine pressure drop in function of mass flow rate, vaidation

- Use cell model results as boundary conditions for CFD-CHT calculations of cooling plate efficiency (heat transfer, coolant temperature evolution)

### CFD-CHT simulations with small representative module to determine cooling efficiency at various operating conditions:

- Analyze cells temperature evolution for different C-rates, coolant mass flow rates, ambient temperatures, ...

#### • Validation with full module / pack





• The connections of the module are arranged according to a 12S 5P configuration.







- To design the cooling system , the first step is to characterize the heat generated by the module, i.e. by each cell.
- The cells are 32700 Li-ion, whose properties are given in the table.

| Characteristic                         | Value       |  |  |
|----------------------------------------|-------------|--|--|
| Nominal Capacity                       | 6 Ah        |  |  |
| Nominal Voltage                        | 3.2 V       |  |  |
| Maximum Voltage                        | 3.65 V      |  |  |
| Minimum Voltage                        | 2 <i>V</i>  |  |  |
| Maximum continuous discharging current | 33 A (5.5C) |  |  |
| Maximum continuous charging current    | 36 A (6C)   |  |  |
| Maximum discharing temperature         | 65 ºC       |  |  |
| Maximum charging temperature           | 65 ºC       |  |  |
| Diameter                               | $0.032 \ m$ |  |  |
| Length                                 | $0.070\ m$  |  |  |







### > Parameters needed for the cell model

• Thermal conductivity in axial and radial directions calculated with the different materials conductivities and thicknesses of the jelly roll.

$$k_{rad} = \frac{\ln \frac{r_n}{r_1}}{\sum_{i=1}^{n-1} \frac{\ln \frac{r_{i+1}}{r_i}}{k_i}} = 0,2\frac{W}{mK}$$

$$k_{ax} = \frac{\sum_{i=1}^{n-1} k_i * A_i}{A_{total}} = 32 \frac{W}{mK}$$

• Positive and negative electrical conductivities

$$\sigma_{eq, positive} = \frac{\sum_{i=1}^{n-1} \sigma_{i,P_c} * A_{i,P_c} + \sum_{i=1}^{n-1} \sigma_{i,P_e} * A_{i,P_e}}{A_{total}(P_c,P_e)}$$

$$\sigma_{eq,p} = 1,62.10^6 \ S/m$$

$$\sigma_{eq, negative} = \frac{\sum_{i=1}^{n-1} \sigma_{i,N_c} * A_{i,N_c} + \sum_{i=1}^{n-1} \sigma_{i,N_e} * A_{i,N_e}}{A_{total}(N_c,N_e)}$$

$$\sigma_{eq,n} = 1,49.10^6 \ S/m$$





ERCOFTAC Spring Festival 16th May 2024





### > One cell model meshing:



- Mesh generation:
  - To avoid high number of mesh cells in the contact zones, a *contact mesh sizing* has been separately defined at the contacting surfaces

| Number of nodes    | 5,661,214  |
|--------------------|------------|
| Number of elements | 23,437,214 |



### SET-UP OF ONE CELL CFD-CHT MODEL



### Boundary conditions:

- For cell:
  - 2C discharging condition
  - Ambient temperature: 293.15 K
- For cooling plate:
  - Inlet mass flow: 7.5 L/min (4.83 m/s)
  - Inlet fluid temperature: 293.15 K
    - Fluid was assumed completely stabilised inside the cooling plate.





- The white line in the image represents two planes, which were created to observe the temperature distribution between cell and the cooling plate
  - One in vertical direction (considering the centre of the cell)
    - Second in horizontal direction (considering the centre of the cooling plate)





### Results of one cell CFD-CHT model



- Cell Temperature at SOC = 0
  - Without cooling plate = 315.32 K
  - With cooling plate = 301.64 K
  - Difference between with and without cooling plate = 13.68 K
- Coolant contact wall temperature at SOC = 0
  - 293.32 K
  - Total rise in wall temperature from SOC 1 to 0 = 0.17 K





### Geometry and meshing of cooling plate





Mesh on and in the channels







### Boundary conditions and velocity field at inlet





#### **Boundary conditions:**

Inlet mass flow: 3.27 L/min Fluid inlet temperature: 293.15 °C Heat flux on the refrigerant walls: 910 W/m<sup>2</sup>

| Coolant: Water Glycol Properties at 20°C |         |  |  |  |
|------------------------------------------|---------|--|--|--|
| Density(kg/m3)                           | 1082    |  |  |  |
| Viscosity (kg/m s)                       | 0.00487 |  |  |  |
| Specific heat (J/kg K)                   | 3260    |  |  |  |
| Conductivity (W/m K)                     | 0.402   |  |  |  |

ERCOFTAC Spring Festival 16th May 2024





### Velocity field at outlet







#### **Results at outlet** Fluid velocity: 2.11 m/s (3.27 L/min)

- Due to the change in geometry, higher velocity can be seen at the entrance of the outlet
- The velocity stabilises as it moving towards the end of the outlet





### Pressure field and fluid temperature in cooling plate



- Pressure gradient
   difference along channels
   due to the position of the
   entry
- The overall pressure drop along the cooling plate
   1.03 bar

- The temperature increase of the coolant between inlet and outlet is **0.88 K.**
- The fluid temperature at the outlet is **294.03 K.**
- Estimated heat transfer coefficient is  $850.16 \frac{W}{m^2 K}$







### > Validation with experimental measurements



- Good agreement between CFD and experiments.
- Maximum difference found is 6% for 3,27 L/min.
- Differences probably due to microchannels internal geometry.

| Flow rate (L/min)                              | 2      | 3,27   |
|------------------------------------------------|--------|--------|
| Temperature at outlet (K)                      | 21,72  | 20, 88 |
| Pressure loss (bar)                            | 0,53   | 1,03   |
| Heat transfer coefficient (W/m <sup>2</sup> K) | 611,52 | 850,16 |





### > Results of heat transfer through cooling plate wall

| Cases                 | <b>Boundary conditions</b>                                                                         | Fluid outlet<br>temperature (°C) | Heat flux<br>(W/m <sup>2</sup> ) | Average heat transfer<br>coefficient (W/(m2 K)) |
|-----------------------|----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------|
| Case 1 (base<br>case) | Inlet flow rate: 3.27 L/min<br>Fluid inlet temperature: 20 °C<br>Wall temperature: 40°C            | 39.75                            | 17350                            | 851.53                                          |
| Case 2                | Inlet flow rate: 3.27 L/min<br>Fluid inlet temperature: 20 °C<br>Heat flux: 17350 W/m <sup>2</sup> | 39.67                            | 17350                            | 997.09                                          |
| Case 3                | Inlet flow rate: 3.27 L/min<br>Fluid inlet temperature: 20 °C<br>Heat flux: 910 W/m <sup>2</sup>   | 21.03                            | 910                              | 158.6                                           |







### > Small representative module geometry

• Small 5P2S module representative of the e-bus battery pack module: same cells and connectors, same distribution.







### Results of CFD-CHT model for small module

- Voltage max value is set at 3.65V and min at 2V (for SOC 0).
- Current is 6 A for each cell which equals 1C discharge rate.
- 60 hours CPU for one simulation on a Workstation.



#### SOC evolution during 1C discharge



Cell voltage evolution during 1C discharge



# Current voltage evolution during 1C discharge

ERCOFTAC Spring Festival 16th May 2024





### Results of CFD-CHT model for small module





with natural convection

 Temperature increases from 273.15 K to 294.5 K during the 90 percent discharge.





### > Ongoing and future work

- The small module results need more anlysis to ensure that the model works properly.
- The full module will then be considered.
- Validation will be possible with experimental measurements of the full module.







# Thank you for your attention

# Any questions?