IMPERIAL

Department of Chemical Engineering

Direct numerical simulations of Multiphase Flows in Stirred Vessels and Static Mixers

Omar Matar 10/10/2024

Multiphase flows

Challenges

Multiphase flows are discontinuous

- Phase-interface extremely thin and exhibits a singular surface tension force
- Fluid properties jump across the interface

Multiphase flows are multi-scale

- From microscopic droplets to meters (oceanic flows)
- Complex topology changes
- Turbulence (atomisation)

Multi-scale: oceanic flows

Discontinuous: Atomisation

Multi-physics: dirty interfaces

Multiphase flow are multi-physics

- Surfactant-laden interfaces featuring Marangoni stresses (dirty interfaces)
- Non-isothermal, phase change

Numerical simulations facilitate isolation of mechanisms

Multiphase Flows Governing Equations

<u>N-S equations:</u>

[1] Shin, S., Chergui, J., Juric, D., Kahouadji, L., Matar, O. K., & Craster, R. V. (2018). A hybrid interface tracking–level set technique for multiphase flow with soluble surfactant. *Journal of Computational Physics*, 359, 409-435.

[2] Fadlun, E. A., Verzicco, R., Orlandi, P., & Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. *Journal of computational physics*, *161*(1), 35-60.

Multiphase Flows

Governing Equations

• Surfactant transport:

Bulk:
$$\frac{\partial \tilde{C}}{\partial t} + \widetilde{\boldsymbol{u}} \cdot \nabla \tilde{C} = \frac{1}{Pe_b} \nabla^2 \tilde{C},$$

Interface:
$$\frac{\partial \widetilde{\Gamma}}{\partial t} + \nabla_s \cdot \left(\widetilde{\Gamma} \widetilde{\boldsymbol{u}}_t\right) = \frac{1}{Pe_s} \nabla_s^2 \widetilde{\Gamma} + \widetilde{J},$$

Ad/des flux: $\tilde{J}_{a/d} = \frac{Bi}{k\tilde{C}_0(1-\tilde{\Gamma})-\tilde{\Gamma}},$

Diffusive flux :
$$\tilde{J}_{diff} = -\frac{1}{Pe_bh} \boldsymbol{n} \cdot \nabla \tilde{C}|_{sub}$$

Langmuir relation:
$$\tilde{\sigma} = \max[0.05, 1 + \beta_s \ln(1 - \tilde{\Gamma})].$$

Multiphase Flows Numerical Method

Hybrid **front-tracking/level-set** methods

- Accurate calculation of surface tension forces
- It can handle complex topological changes
- Mass conservation
- Lagrangian interface tracking

Geometry

	Liu et al. (2005) and Rar	iu et al. (2005) and Rama Rao et al. (2007) specifications			
	Feature				
	Pipe diameter D_P (m)	0.01575			
	Number of crossbars	8			
	Aspect ratio L_E/D_P	1			
	Entry length L_h (m)	0.01575			
	Number of elements n_E	2			
	Bar thickness Th (m)	0.001			
$\overbrace{L_E}$	Bar width W (m)	0.0019			
\longrightarrow D_p	Length L (m)		0.064		
L Flow direction	_	Subdomains	Cells pe	er subdomain	
	Grid details	$12\times6\times6$	128	$\times 64 \times 64$	
		Cont	inuous	Dispersed	
	Density $ ho$ (kg/m ³)		364	960	
	Viscosity μ (Pa ·	s) 0.	615	0.0984	
	Surface tension σ (<i>N</i> / <i>m</i>)		0.036		
	Flow rate Q (m^3/s)		9.0e-6		
	Re		1.63		
L_h					

Liu et al. (2005) and Rama Rao et al. (2007) specifications

Case Studies

Two-stage Breakup

Dispersion Process: 1st Stage

 $\tilde{\Gamma}$ 0.20

0.40

0.0

Imperial College London

Parametric Study

Parametric Study

Stirred Vessels Impeller Types

Imperial College London

Stirred Vessels Simulation Setup

w

Impeller Geometry [cm]				
diameter, D	4.25			
height, h	1			
thickness, w	0.2			
length, <i>l</i>	2.5			
clearance, C	1			
inclined angle, α [°]	45			
rotation speed, N [rps]	5			
Physical properties				
surfactant-free	0.035			
interfacial tension, σ_s				
oil viscosity, μ_o [Pa ·s]	5.4×10^{-3}			
water viscosity, μ_w	1.0×10^{-3}			
oil density, $\rho_o [\text{kg}/m^3]$	824			
water density, ρ_w	998			

Stirred Vessels Effect of Impeller Speed

Drop Size Distributions

Stirred Vessels Effect of Surfactant on Interfacial Dynamics

Step 1 Interface deformation

Step 2 & 3 Ligament and drop formation

Step 4 Cessation of interface-impeller contact

Step 1: Interface Deformation

Imperial College London

Stirred Vessels Steps 2 & 3: Drop Dispersion

Steps 2 & 3: Marangoni Effects

Steps 2 & 3: Marangoni Effects

Steps 4: Cessation of Interface-Impeller Contact

Stirred Vessels Drop Number & Size Distribution

Acknowledgements

Imperial College London