

## Aerodynamic Optimisation of Aerofoils for Martian Rotorcraft



ERCOFTAC, 10<sup>th</sup> October 2024

LIDIA CARÓS ROCA

PHD CANDIDATE, IMPERIAL COLLEGE LONDON

PROF. PETER VINCENT PROF. OLIVER BUXTON

## **P**yFR

## Outline

- Introduction
- Optimisation setup
- Optimisation results
- Effects of free-stream eddies
- Summary and future work

## **P**yFR

## Outline

- Introduction
- Optimisation setup
- Optimisation results
- Effects of free-stream eddies
- Summary and future work

**P**yFR

## Introduction - Motivation

Ingenuity achieved first powered flight on another planet (Mars) on 2021





**Technology demonstrator – 5 planned flights** Flew from April 2021 to January 2024 72 flights - Covered 17 km



https://mars.nasa.gov/technology/helicopter

Introduction

Optimisation Setup

Optimisation Results

Effects of free-stream eddies

Summary

**P**yFR

## Introduction - Motivation

Next-generation Martian helicopter for science and discovery



Increased payload – science equipment Increased range – exploration beyond rovers





Introduction

Optimisation Setup

Optimisation Results

Effects of free-stream eddies

Summary



## Introduction - Martian atmospheric conditions

Designing airfoils for Martian Rotorcraft is challenging due to the flow conditions on Mars of

very low density and low speed of sound:

Low Reynolds Number  $(10^3 - 10^4)$ 

Compressible Mach Number (0.7 - 0.9)

- Years of research have optimised airfoils for all flow conditions on Earth
- Martian rotorcraft airfoils is a reasonably unexplored field



**Optimisation Results** 

Effects of free-stream eddies



## Introduction - Martian atmospheric conditions

Designing airfoils for Martian Rotorcraft is challenging due to the flow conditions on Mars of

very low density and low speed of sound:

Low Reynolds Number  $(10^3 - 10^4)$ 

Compressible Mach Number (0.7 - 0.9)

- Years of research have optimised airfoils for all flow conditions on Earth
- Martian rotorcraft airfoils is a reasonably unexplored field



**Optimisation Setup** 

**Optimisation Results** 

Effects of free-stream eddies

## **P**yFR

## **Introduction** - Sharp-leading-edge airfoils

- Separated flow from the sharp leading edge
- Separated shear layer ondulates
- Formation of large coherent vortices (roll-up)
- Flow unsteadiness



#### Introduction

Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies



## **Introduction** - Optimisation of sharp-leading-edge airfoils

**Unsteady and transitional flow - DNS** 



F. D. Witherden, A. M. Farrington, and P. E. Vincent. **PyFR**: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Computer Physics Communications, 185(11):3028–3040, 2014.

J. Blank and K. Deb, **pymoo**: Multi-Objective Optimisation in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, 10.1109/ACCESS.2020.2990567

Introduction

**Optimisation Setup** 

**Optimisation Results** 

Effects of free-stream eddies

Summary

**Q** PyFR

## Introduction - Optimisation of sharp-leading-edge airfoils



#### **Unsteady and transitional flow - DNS**



#### **Direct Numerical Simulations**

- High order accurate
- Unstructured meshes
- High parallel performance
- GPU-enabled

F. D. Witherden, A. M. Farrington, and P. E. Vincent. **PyFR**: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Computer Physics Communications, 185(11):3028–3040, 2014.

J. Blank and K. Deb, pymoo: Multi-Objective Optimisation in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, 10.1109/ACCESS.2020.2990567

#### Introduction

Optimisation Setup

#### **Optimisation Results**

Effects of free-stream eddies

**PyFR** 

## Introduction - Optimisation of sharp-leading-edge airfoils



#### Genetic Algorithms

- No gradient information needed
- Avoid local optima
- Easy to parallelize

#### **Unsteady and transitional flow - DNS**





#### **Direct Numerical Simulations**

- High order accurate
- Unstructured meshes
- High parallel performance
- GPU-enabled

F. D. Witherden, A. M. Farrington, and P. E. Vincent. **PyFR**: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Computer Physics Communications, 185(11):3028–3040, 2014.

J. Blank and K. Deb, pymoo: Multi-Objective Optimisation in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, 10.1109/ACCESS.2020.2990567

#### Introduction

Optimisation Setup

#### Optimisation Results

Effects of free-stream eddies

## **P**yFR

## **Introduction** - Optimisation of sharp-leading-edge airfoils



F. D. Witherden, A. M. Farrington, and P. E. Vincent. **PyFR**: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Computer Physics Communications, 185(11):3028–3040, 2014.

J. Blank and K. Deb, pymoo: Multi-Objective Optimisation in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, 10.1109/ACCESS.2020.2990567

#### Introduction

Optimisation Setup

#### **Optimisation Results**

Effects of free-stream eddies

## **P**yFR

# Outline

- Introduction
- Optimisation setup
- Optimisation results
- Effects of free-stream eddies
- Summary and future work

**PyFR** 

## **Optimisation setup**



Apex coordinates of a triangular airfoil at angle of attack of  $\alpha = 12^{\circ}$ Re = 3,000 and M = 0.15

**P**yFR

## **Optimisation setup**



## **P**yFR

## **Optimisation setup**



Effects of free-stream eddies

**PyFR** 



**Optimisation Results** 

Effects of free-stream eddies

**P**yFR

## Optimisation setup

Objective functions CL and CD Multi-objective optimisation Multiple optimum solutions

pym∞



**Optimisation Setup** 

**Optimisation Results** 

Effects of free-stream eddies

Summary

## **P**yFR

#### Evaluation



## **P**yFR

# Outline

- Introduction
- Optimisation setup
- Optimisation results
- Effects of free-stream eddies
- Summary and future work

## **P**yFR

## Validation

#### Paper: L. Caros et al. AIAA Journal 2022 10.2514/1.J061454

AIAA JOURNAL

Direct Numerical Simulation of Flow over a Triangular Airfoil Under Martian Conditions

> Lidia Caros\* and Oliver Buxton<sup>†</sup> Imperial College London, London, England SW7 2AZ, United Kingdom Tsuyoshi Shigeta,<sup>‡</sup> Takayuki Nagata,<sup>§</sup> Taku Nonomura,<sup>§</sup> and Keisuke Asai<sup>\*\*</sup> Tohoku University, Sendai, Miyagi 880-8579, Japan and Peter Vincent<sup>††</sup> Imperial College London, London, England SW7 2AZ, United Kingdom

#### Seminar: L. Caros. Cassyni 2021 10.52843/47ly7q





#### Introduction

#### Optimisation Setup

#### **Optimisation Results**

#### Effects of free-stream eddies

**P**yFR



Introduction

on Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary

**P**yFR



Introduction

on Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary



## **Optimisation Results**

All exploit vortex roll-up. First suction surface almost parallel to the flow.



Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

|v|

0.00

1.00

1.75

Summary

**PyFR** 

## **Optimisation Results**

All exploit vortex roll-up. First suction surface almost parallel to the flow.





#### Introduction

Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary

**P**yFR



Introduction

Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary

## **P**yFR



#### Introduction

Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary





#### Introduction

Optimisation Setup

#### **Optimisation Results**

Effects of free-stream eddies

Summary

## **PyFR**



Introduction

n Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary

## **P**yFR

## Outline

- Introduction
- Optimisation setup
- Optimisation results
- Effects of free-stream eddies
- Summary and future work

## **P**yFR

## Effects of free-stream eddies on optimised airfoils

Injection of eddies with the Synthetic Eddy Method implemented in PyFR

- Target turbulence intensities
  TI=1% and TI=0.5%
- Target integral lengthscales
  Is=0.1c and Is=0.05c





Optimisation Results

Effects of free-stream eddies

Summary

## **P**yFR

## Effects of free-stream eddies on optimised airfoils



Introduction

Optimisation Setup

Optimisation Results

Effects of free-stream eddies

Summary

## **P**yFR

### Effects of free-stream eddies on optimised airfoils



**Optimisation Results** 

Effects of free-stream eddies

Summary

## **P**yFR

## Effects of free-stream eddies on optimised airfoils

Injection of eddies with the Synthetic Eddy Method implemented in PyFR

- Target turbulence intensities
  TI=1% and TI=0.5%
- Target integral lengthscales
  Is=0.1c and Is=0.05c



Optimisation Results

Effects of free-stream eddies

Summary

## **PyFR**

### Effects of free-stream eddies on optimised airfoils

Injection of eddies with the Synthetic Eddy Method implemented in PyFR

- Target turbulence intensities
  TI=1% and TI=0.5%
- Target integral lengthscales Is=0.1c and Is=0.05c



Optimisation Results

Effects of free-stream eddies

Summary

## **P**yFR

## Effects of free-stream eddies on optimised airfoils

Injection of eddies with the Synthetic Eddy Method implemented in PyFR

- Target turbulence intensities
  TI=1% and TI=0.5%
- Target integral lengthscales
  Is=0.1c and Is=0.05c



Effects of free-stream eddies

## **P**yFR

## Effects of free-stream eddies on optimised airfoils

Injection of eddies with the Synthetic Eddy Method implemented in PyFR

- Target turbulence intensities
  TI=1% and TI=0.5%
- Target integral lengthscales
  Is=0.1c and Is=0.05c



Effects of free-stream eddies

PyFR

Group 1

140

## Effects of free-stream eddies on optimised airfoils

- Free-stream eddies tend **break** the **periodicity** of the flow due to the breakdown of the **coherent vortices**
- The higher the TI and Is, the stronger the effect



Introduction

**Optimisation Setup** 

**Optimisation Results** 

Effects of free-stream eddies

**Uniform free-stream** 

Summary

1.5

80

C 1.0

**P**yFR

Effects of free-stream eddies on optimised airfoils



#### Introduction

Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary

**PyFR** 

### Optimisation with free-stream eddies

How would optimum airfoils look like if we optimised them with free-stream eddies?



- Pareto optimal aerofoils 3D-DNS-12<sub>2DS</sub>
- \* FSE-run Pareto optimal aerofoils 3D-DNS-122DS-



Introduction

**PyFR** 

### Optimisation with free-stream eddies

• Optimum airfoils under free-stream eddies show apexes towards the trailing edge.

- Pareto optimal aerofoils 3D-DNS-12<sub>2DS</sub>
- FSE-run Pareto optimal aerofoils 3D-DNS-122DS
- All tested aerofoils 3D-DNS-12-FSE<sub>3DS</sub>
- Pareto optimal aerofoils 3D-DNS-12-FSE<sub>3DS</sub>



**PyFR** 

**Optimisation with free-stream eddies** 













Introduction

**Optimisation Setup** 

**Optimisation Results** 

Effects of free-stream eddies

Summary

## **PyFR**

### **Optimisation with free-stream eddies**

- Pareto Front from optimisation with free-stream eddies run under uniform free-stream conditions
- Multi-point optimisation

0.3

0.2

0.1

0

ya



0.28

Introduction

**Optimisation Setup** 

**Optimisation Results** 

Effects of free-stream eddies

Summary

## **PyFR**

## Outline

- Introduction
- Optimisation setup
- Optimisation results
- Effects of free-stream eddies on optimised airfoils
- Summary and Next Steps

## **O**PyFF

## Summary

- Martian conditions low Reynolds number, high Mach number not typical on Earth
  - Airfoils with **sharp leading edges** offer good performance unexplored field

- **Optimisation** using high order accurate **DNS** with PyFR
  - Improved efficiency by exploiting the separation of the flow and vortex roll-up.

#### • Effects of free-stream eddies

- Free-stream eddies break the coherent structures and regularise performance of different airfoils.
- Optimised airfoils extend area to maximise the suction of vortex roll-up.



Optimisation Results

Effects of free-stream eddies

Summary

## Summary

- Martian conditions low Reynolds number, high Mach number not typical on Earth
  - Airfoils with **sharp leading edges** offer good performance unexplored field
- Optimisation using high order accurate DNS with PyFR
  - Improved efficiency by **exploiting** the separation of the flow and **vortex roll-up**.

### • Effects of free-stream eddies

- Free-stream eddies break the coherent structures and regularise performance of different airfoils.
- Optimised airfoils extend area to maximise the suction of vortex roll-up.

Optimisation Results Ef

Effects of free-stream eddies









## Summary

IMPERIAL

- Martian conditions low Reynolds number, high Mach number not typical on Earth
  - Airfoils with **sharp leading edges** offer good performance unexplored field

- **Optimisation** using high order accurate **DNS** with PyFR
  - Improved efficiency by exploiting the separation of the flow and vortex roll-up

#### • Effects of free-stream eddies

- Free-stream eddies break the coherent structures and regularise performance of different airfoils
- Optimised airfoils extend area to maximise the suction of vortex roll-up

Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies









**PyFR** 

Next Steps





#### IMPERIAL



Optimisation Setup

**Optimisation Results** 

Effects of free-stream eddies

Summary

**PyFR** 

## Acknowledgements



## Thank you

Lidia Caros Roca

Imperial College London

lidia.caros-roca19@imperial.ac.uk